乳腺超声若干临床常见问题专家共识 (中国超声医学工程学会浅表器官及外周血管专业委员会) 2018 年 6 月

审阅专家

姜玉新 北京协和医院

共识撰写专家(按照姓氏拼音字母排序,排名不分先后):

编写组组长:

蒋天安 浙江大学医学院附属第一医院

副组长:

陈 文 北京大学第三医院

罗葆明 中山大学孙逸仙纪念医院

彭玉兰 四川大学华西医院

王知力 解放军总医院

徐金锋 深圳市人民医院

周建桥 上海交通大学附属瑞金医院

周 琦 西安交通大学第二附属医院

编写成员:

包凌云 杭州市第一人民医院

陈 莉 南昌大学第一附属医院

陈 林 上海华东医院

陈 琴 四川省人民医院

丛淑珍 广东省人民医院

崔可飞 郑州大学第一附属医院

崔新伍 华中科技大学同济医学院附属同济医院

房勤茂 河北医科大学第三附属医院

李逢生 陕西省肿瘤医院

李汇文 鄂尔多斯市中心医院

李 敬 天津市人民医院

李建初 北京协和医院

李俊来 中国人民解放军总医院

李泉水 深圳大学第三附属医院

李天亮 山西省心血管病医院

李 陶 第三军医大学第三附属医院

李沿江 南昌大学第二附属医院

李征毅 深圳市第二人民医院

刘 佳 大连市中心医院

刘 勇 首都医科大学附属北京世纪坛医院

罗 俊 四川省人民医院

马 喆 山东大学齐鲁医院

聂 芳 兰州大学第二医院

彭成忠 浙江省人民医院

隋秀芳 安徽省立医院

孙红光 扬州大学附属医院

唐 力 中国医科大学附属第一医院

王宏桥 青岛大学附属医院

王 静 华中科技大学同济医学院附属协和医院

王 燕 上海市第六人民医院超声科

吴长君 哈尔滨医科大学附属第一医院

肖 萤 中南大学湘雅医院

熊华花 深圳市第二人民医院

徐 栋 浙江省肿瘤医院

薛恩生 福建医科大学附属协和医院

薛利芳 北京大学国际医院

严松莉 福建省莆田市第一医院

杨丽春 云南省肿瘤医院

勇 强 北京安贞医院

詹维伟 上海交通大学附属瑞金医院

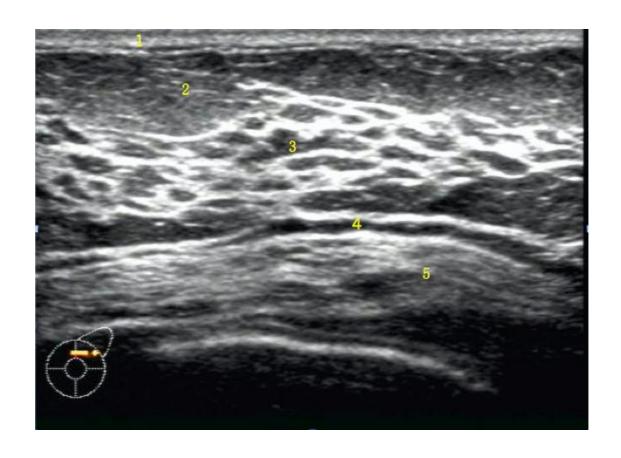
张 晟 天津医科大学肿瘤医院

张学珍 蚌埠医学院第二附属医院

周显礼 哈尔滨医科大学附属第二医院

编写组秘书:

林 僖 中山大学肿瘤防治中心


殷珊娱 浙江大学医学院附属第一医院

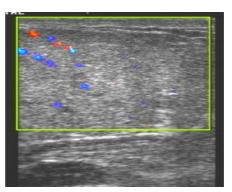
赵齐羽 浙江大学医学院附属第一医院

超声作为乳腺疾病首选的影像学检查方法,具有无辐射、诊断准确性高、方便快捷、易于随访复查等优点,在临床诊疗决策中具有重要和不可替代的价值。 为进一步规范乳腺超声检查,统一标准,提高超声在临床决策中的地位,在 2013 版 ACR BI-RADS 指南基础上,本专委会就实际工作中有争议的若干问题达成以下共识,随着临床实践的不断深入及文献积累,将对《共识》内容进行更新。 本专委会共识仅供本行业医疗人员使用,不具备法律效力。

问题一、国内超声报告中多见"乳腺增生症"结论,是否准确? 专家意见:

超声诊断不建议提示乳腺增生症。因为乳腺增生症可表现为多种影像学改变:包括单纯性囊肿、腺瘤样结节、腺病改变等,这些改变在 BI-RADS 分类中已经纳入不同类别。针对未发现占位的乳腺,无论患者有或无临床症状,超声结论可提示为:双乳未见占位性病变(BI-RADS: 1 类)。

1、皮肤 2、皮下脂肪 3、腺体层 4、乳腺后间隙 5、胸壁肌层


图一、正常乳腺灰阶超声图。超声结论:双乳未见占位性病变(BI-RADS:1类)。

问题二、在女性特殊周期,如青春期、孕期、哺乳期、更年期时,结论中是否需要提示?

专家意见:

刚发育的乳腺及哺乳期乳腺应列为结论的第一句来体现,其余不建议赘述。 哺乳期时还要在报告中描述乳腺导管情况,是否有乳汁淤积等,出现局部回声不 均时也要提示。其他特殊周期则不用提示。

图二、发育期乳腺和哺乳期乳腺灰阶超声图

问题三、乳腺厚度需要常规测量并描述吗?

专家意见:

正常乳腺不需要常规测量厚度。乳腺厚度受种族差异、个体差异及月经周期的影响,无实际临床意义。

问题四、哺乳期乳腺炎超声图像与临床症状不相符,如何描述及诊断? 专家意见:

- 1. 依据超声图像表现,如实描写即可。
- 2. 如超声没有明确的阳性发现,结论提示为:哺乳期乳腺,目前未见明显脓肿形成(BI-RADS:1类)。

问题五、乳腺内有多个病灶,是否需要逐一描述?如何分类?应用钟点法描述病灶时,距离乳头的距离是否需要描述? 专家意见:

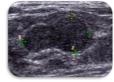
- 1. 双侧乳腺结节应分别描述。病灶描述必须应用钟点法记录其方位及距乳头的距离。如临床需要或同一部位出现多个相邻结节,应记录病灶距皮肤的距离。
- 2. 对于 BI-RADS 2、3 类病变,如多个病灶在超声表现上基本相同,可以合并描述,只详细记录每侧乳腺最大病灶,并测量其三个径线。BI-RADS 4 类以上的病灶,亚类一致时建议逐一记录病灶方位及距乳头的距离,统一描述病灶特征。
- 3. 结论必须要与描述一一对应,因此,对于性质相同并统一描述的结节应统一分类,对逐一描述的结节则应逐一分类。

问题六、诊断乳腺导管扩张的导管内径是多少?如何描述及分类?专家意见:

- 1. 扩张的乳腺导管需要记录方位及距乳头的距离。需要结合年龄、月经等因素进行分类。
- 2. 无症状患者,如果局部扩张的导管管壁光滑,建议在内径大于 2mm 时再进行描述,并分至 BI-RASDS 2 类,如患者伴有乳头溢液或溢血,而超声仅发现了单纯的局部导管扩张,应如实描述,超声结论报 BI-RADS: 0 类。
- 3. 如果不仅导管扩张,而且导管内或导管壁出现回声改变时,无论导管内径是否大于 2mm,均应进行详细描述,并根据病变具体情况分类。

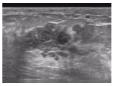
问题七、乳腺内囊性结节小至数毫米,大至数厘米,描述及结论如何进行? 专家意见:

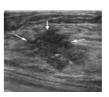
- 1. 如多个囊性结节声像图表现基本一致,可只对每侧最大的结节的最大径进行描述并测量,同时标明具体位置。
 - 2. 如果该囊肿为乳腺 X 线上发现的或临床触及的肿块,应详细予以描述。
- 3. 如其中某些囊性结节在声像图表现上与其它不同,如有碎屑或实性成分出现,需要单独描述、测量并标明具体位置。


问题八、典型的乳腺病变,如纤维腺瘤,可否在 BI-RADS 基础上给予病理诊断? 专家意见:

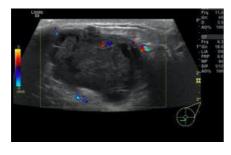
典型的乳腺病变,可根据自身经验,在BI-RADS基础上注明可能的病理诊断。 如典型的纤维腺瘤,超声提示为BI-RADS 3 类,考虑纤维腺瘤可能性大。

问题九、乳腺低回声病灶形态不规整呈分叶状但边界清晰锐利的怎么分类? 专家意见:


1. 在 BI-RADS 的应用词典中,椭圆形的概念是允许病变外形包含 2-3 个平缓的局部隆起或大分叶,当病变满足"椭圆形、与皮肤平行、边缘光整清晰"三个条件,排除其他恶性征象时,代表良性可能性大,可分至 2 类 (囊性结节)或


3类(实性结节),其余不能同时满足这三个条件的结节可分至4类及以上。具体见图例,只有图一是可以分至3类的。

椭圆形 (浅分叶)


不规则形 (成角)

不规则形 (成角)

微分叶

微分叶及成角

2. 虽然在 BI-RADS 分类里,并没有提及年龄因素,但实际工作中,患者的年龄也是重要的参考依据,尤其中国女性乳腺癌的平均发病年龄比欧美女性早,因此,在分类时 40 岁以上女性可根据具体情况适当升类。如下图所示,如为 40 岁以上患者的病变,应分至 4A 类较为合适。

问题十、什么样的情况下诊断 BI-RADS 0 类? 专家意见:

建议尽量不做 BI-RADS 0 类的诊断, 若出现以下情况可酌情考虑:

- 1. 患者情况特殊导致超声不能扫查完全,如乳腺区域皮肤表面有较大破损、或巨大乳腺致深方结构显示不清等,可以提示 BI-RADS: 0 类。
- 2. 局部回声明显不均匀但没有发现明确占位、有客观临床体征但超声没有明确占位、腺体内大量点状强回声但没有发现明确占位、患者乳头溢血但扩张导管内没有发现明确占位的,均可以提示 BI-RADS: 0 类。

问题十一:有关微创旋切术后:病理证实为乳腺癌,再次超声检查时如何分类?若病理为良性,超声复查如何分类?专家意见:

(1) 微创旋切术后,病理结果提示为乳腺癌,再次超声检查虽然病灶已切

- 除,超声分类为BI-RADS:6类。
- (2) 病理结果为良性,复查超声若术区仅发现疤痕改变,可提示 BI-RADS: 3 类,随访两年术区稳定降为 2 类。若乳腺未见明确病灶,可提示 BI-RADS: 1 类。

问题十二:外院肿物手术切除术后病理证实为乳腺癌,再次超声检查时如何分类?

专家意见:

若患者需进行乳腺癌改良根治术或扩大切除,超声检查可提示 6 类,把这次肿物切除当成病理活检;若患者不再进行外科处理,只进行化疗或放疗,此时的超声检查仅发现疤痕改变可提示为术后改变(BI-RADS: 3 类)。

问题十三:新辅助化疗病人多次复查超声,如何分类?专家意见:

- (1)新辅助化疗的病人,在没有外科治疗之前复查超声,若超声仍能探及病灶或病灶基本消失仅表现为周围组织结构扭曲或异常回声改变,超声提示为BI-RADS:6类,并与前次超声检查做对比。若疗效显著,超声无法显示原病灶,可不进行分类,直接与前次超声检查做对比。
- (2) 若新辅助化疗期间超声探及新发病灶,应描述新发病灶图像特征进行BI-RADS 分类,并对原病灶进行疗效评价,后者为BI-RADS: 6 类。

问题十四、腋窝淋巴结结构正常需要提示吗?如何提示? 是否要对乳腺引流淋巴结进行分区描述?

专家意见:

- 1. 腋窝较大的淋巴结,只要符合所有正常淋巴结的超声诊断标准,可以不提示。
- 2. 需要对乳腺引流淋巴结进行分区描述。引流淋巴结主要包括区域淋巴结(腋窝淋巴结及胸廓内动脉旁淋巴结)及远处锁骨上区淋巴结。腋窝淋巴结分为第一水平、第二水平及第三水平淋巴结,必须扫查并描述。尤其怀疑乳腺病变为恶性时,应同时对锁骨上淋巴结进行扫查及描述;如果可疑恶性病变位于内象限,胸

廓内动脉旁淋巴结也应扫查并描述(扫查第1-4肋间隙)。

问题十五、乳腺超声检查时意外发现的腋下腺体样回声是否需要诊断副乳腺? 患者副乳症状明显,但超声无阳性表现,报告如何书写? 专家意见:

- 1. 腋窝区域皮下发现腺体样结构,应测量其厚度,超声结论提示副乳腺。 但应注意与乳腺腋尾叶鉴别。
- 2. 若患者副乳症状明显,但超声无阳性表现,超声结论提示为: 腋窝未见明显腺体样结构。

问题十六、BI-RADS 指南中还有管理意见,是否我们在分类后还有给予建议的意见,如建议穿刺活检等?

专家意见:

2013 版 ACR BI-RADS 指南是有对应的管理意见,不推荐在报告结论中重复提示。

问题十七、乳腺弹性成像的适应证有哪些?如何应用弹性成像进行诊断? 专家意见:

- 1. 弹性成像包括应变式弹性成像和剪切波弹性成像。根据 2015 版《弹性成像临床应用世超联指南及推荐》,弹性成像临床适应证包括(1)在灰阶超声基础上评估乳腺病灶硬度,辅助良恶性鉴别诊断;(2)应用于 BI-RADS 3 类和 4A 类病例的升降类,减少不必要的穿刺;(3)乳腺癌新辅助化疗疗效评价;(4)乳腺非肿块区域的发现和评估。
 - 2. 关于升降类的共识:

2013 版 ACR BI-RADS 指南强调:超声通过形态、边缘及回声的标准来评估病变恶性的价值远大于病变的软硬度,因此弹性评估是不可以凌驾于形态学特征。应用弹性成像对 BI-RADS 3 类或者 4A 的病例进行升降类是合理的。如果 B-RADS 3 类的病例具有恶性的弹性特征,病灶可升类进行穿刺活检;如果灰阶

超声或其他影像学提示 BI-RADS 2 类 (如脂肪坏死或囊肿),不用弹性成像进行升类。

问题十八、乳腺超声造影的适应证有哪些?

专家意见:

目前,乳腺超声造影仍存在一些争议,基于现有的研究报道,超声造影可以反映病灶微灌注信息,穿刺活检前使用超声造影有助于提高穿刺阳性率;在乳腺癌新辅助化疗中,超声造影对疗效评估有一定价值;对常规超声及弹性成像均难以判断的病灶,可考虑超声造影提供额外的诊断信息,但其鉴别诊断价值仍有争论,尚需要更多临床研究和实践检验。

参考文献

- Mendelson EB, Böhm-Vélez M, Berg WA, et al. Reston, VA.ACR BI-RADS® Ultrasound. In: ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. American College of Radiology; 2013.
- Barr RG, Nakashima K, Amy D, Cosgrove D, Farrokh A, Schafer F, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: Breast. ULTRASOUND IN MEDICINE AND BIOLOGY 2015; 41(5): 1148-60.
- Lee SH, Chang JM, Cho N, Koo HR, Yi A, Kim SJ, et al. Practice guideline for the performance of breast ultrasound elastography.
 Ultrasonography 2014; 33(1): 3-10.
- 4. Berg WA, Cosgrove DO, Dore CJ, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 2012; 262:435-449.
- Gweon HM, Youk JH, Son EJ, Kim JA. Clinical application of qualitative assessment for breast masses in shear-wave elastography. EUROPEAN JOURNAL OF RADIOLOGY 2013; 82(11): e680-5.

- Lee SH, Chang JM, Kim WH, Bae MS, Seo M, Koo HR, et al.
 Added value of shear-wave elastography for evaluation of breast masses detected with screening US imaging. RADIOLOGY 2014; 273(1): 61-9.
- 7. Yoon JH, Ko KH, Jung HK, Lee JT. Qualitative pattern classification of shear wave elastography for breast masses: How it correlates to quantitative measurements. EUROPEAN JOURNAL OF RADIOLOGY 2013; 82(12): 2199-204.
- Mu WJ, Zhong WJ, Yao JY, Li LJ, Peng YL, Wang Y, et al.
 Ultrasonic Elastography Research Based on a Multicenter Study: Adding Strain Ratio after 5-Point Scoring Evaluation or Not. PLoS One 2016; 11(2): e0148330.
- Hao S, Ou B, Li L, Peng Y, Wang Y, Liu L, et al. Could ultrasonic elastography help the diagnosis of breast cancer with the usage of sonographic BI-RADS classification? EUROPEAN JOURNAL OF RADIOLOGY 2015; 84(12): 2492-2500.
- 10. Zhi H, Ou B, Xiao X, Peng Y, Wang Y, Liu L, et al. Ultrasound elastography of breast lesions in chinese women: A multicenter study in china. Clinical Breast Cancer 2013; 13(5): 392-400.
- 11. Zhou J, Zhan W, Chang C, Zhang X, Jia Y, Dong Y, Z et al.

 Grant EG. Breast lesions: Evaluation with shear wave elastography, with special emphasis on the "stiff rim" sign. RADIOLOGY 2014; 272(1): 63-72.
- 12. Park J, Woo OH, Shin HS, Cho KR, Seo BK, Kang EY. Diagnostic performance and color overlay pattern in shear wave elastography (SWE) for palpable breast mass. EUROPEAN JOURNAL OF RADIOLOGY 2015; 84(10): 1943-8.
- 13. Ko KH, Jung HK, Kim SJ, Kim H, Yoon JH. Potential role of shear-wave ultrasound elastography for the differential diagnosis of breast

- non-mass lesions: Preliminary report. EUROPEAN RADIOLOGY 2014; 24(2): 305-11.
- 14. Wan CF, Liu XS, Wang L, Zhang J, Lu JS, Li FH. Quantitative contrast-enhanced ultrasound evaluation of pathological complete response in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy. EUROPEAN JOURNAL OF RADIOLOGY 2018; 103: 118-123.
- 15. Hu Q, Wang XY, Zhu SY, Kang LK, Xiao YJ, Zheng HY.
 Meta-analysis of contrast-enhanced ultrasound for the differentiation of benign and malignant breast lesions. ACTA RADIOLOGICA 2015; 56(1): 25-33.
- 16. Liu J, Gao Y, Li D, Gao Y, Hou L, Xie T. Comparative study of Contrast-Enhanced ultrasound qualitative and quantitative analysis for identifying benign and malignant breast tumor lumps. ASIAN PACIFIC JOURNAL OF CANCER PREVENTION 2014; 15(19): 8149-8153.
- 17. Zhang W, Xiao X, Xu X, Liang M, Wu H, Ruan J, et al. Non-Mass breast lesions on ultrasound: Feature exploration and multimode ultrasonic diagnosis. ULTRASOUND IN MEDICINE AND BIOLOGY 2018; 44(8): 1703-1711.
- 18. Du Y, Wu Y, Chen M, Gu X. Application of contrast-enhanced ultrasound in the diagnosis of small breast lesions. CLINICAL HEMORHEOLOGY AND MICROCIRCULATION 2018.
- 19. Zhong J, Sun DS, Wei W, Liu X, Liu J, Wu X, et al. Contrast-Enhanced Ultrasound-Guided Fine-Needle aspiration for sentinel lymph node biopsy in Early-Stage breast cancer. ULTRASOUND IN MEDICINE AND BIOLOGY 2018; 44(7): 1371-1378.
- 20. Li X, Li Y, Zhu Y, Fu L, Liu P. Association between enhancement patterns and parameters of contrast-enhanced ultrasound and

- microvessel distribution in breast cancer. Oncology Letters 2018; 15(4): 5643-5649.
- 21. Nykanen A, Arponen O, Sutela A, Vanninen R, Sudah M. Is there a role for contrast-enhanced ultrasound in the detection and biopsy of MRI only visible breast lesions? Radiology and Oncology 2017; 51(4): 386-392.
- 22. Lehotska V, Rauova K, Vanovcanova L. Pitfalls of Contrast Enhanced Ultrasound (CEUS) in determination of breast tumor biological dignity. NEOPLASMA 2018; 65(1): 124-131.

衷心感谢中国超声医学工程学会浅表器官及外周血管专业委员会所有委员和常委!由于时间仓促,文中难免存在一些不足,欢迎广大超声医师提出宝贵意见,便于今后修订。